Learning Pullback Metrics for Linear Models

Abstract : In this paper we present an unsupervised differential-geometric approach for learning Riemannian metrics for dynamical models. Given a training set of models the optimal metric is selected among a family of pullback metrics induced by the Fisher information tensor through a parameterized diffeomorphism. The problem of classifying motions, encoded as dynamical models of a certain class, can then be posed on the learnt manifold. Experimental results concerning action and identity recognition based on simple scalar features are shown, proving how learning a metric actually improves classification rates when compared with Fisher geodesic distance and other classical distance functions.
Type de document :
Communication dans un congrès
The 1st International Workshop on Machine Learning for Vision-based Motion Analysis - MLVMA'08, Oct 2008, Marseille, France. 2008
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00326722
Contributeur : Peter Sturm <>
Soumis le : dimanche 5 octobre 2008 - 12:44:48
Dernière modification le : lundi 6 octobre 2008 - 09:40:12
Document(s) archivé(s) le : lundi 8 octobre 2012 - 13:56:46

Fichier

mlvma08_submission_14.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00326722, version 1

Collections

Citation

Fabio Cuzzolin. Learning Pullback Metrics for Linear Models. The 1st International Workshop on Machine Learning for Vision-based Motion Analysis - MLVMA'08, Oct 2008, Marseille, France. 2008. 〈inria-00326722〉

Partager

Métriques

Consultations de la notice

88

Téléchargements de fichiers

343