Learning Facial Expressions: From Alignment to Recognition

Abstract : One of the main challenges in 'real-life' object recognition applications is keeping some invariance properties such as: translation, scaling, and rotation. However, trying to maintain such invariants can impair recognition capabilities, especially when the family of objects of interest has a large shape variability. We present a general family of shape metrics that generalizes Procrustes metric and within this framework learns the desired shape metric parameters from labeled training samples. The learnt distance retains invariance properties on one hand and emphasizes the discriminative shape features on the other hand. We show how these metrics can be incorporated in multi-class classification kernel SVMs. We demonstrate the merits of this approach on multi-class facial expressions recognition using the AR dataset. The results address some questions and cautions regarding the interpretation of classification results when using still images datasets collected in a controlled lab environment and their relevance for 'real-life' applications.
Type de document :
Communication dans un congrès
Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Oct 2008, Marseille, France. 2008
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00326734
Contributeur : Peter Sturm <>
Soumis le : dimanche 5 octobre 2008 - 13:13:15
Dernière modification le : lundi 6 octobre 2008 - 09:35:11
Document(s) archivé(s) le : lundi 8 octobre 2012 - 13:57:18

Fichier

Gill_eccv2008submission.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00326734, version 1

Collections

Citation

Daniel Gill, Yaniv Ninio. Learning Facial Expressions: From Alignment to Recognition. Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Oct 2008, Marseille, France. 2008. 〈inria-00326734〉

Partager

Métriques

Consultations de la notice

105

Téléchargements de fichiers

81