Skip to Main content Skip to Navigation

Concurrency, sigma-algebras, and probabilistic fairness

Samy Abbes 1 Albert Benveniste 2 
2 DISTRIBCOM - Distributed and Iterative Algorithms for the Management of Telecommunications Systems
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : We extend previous constructions of probabilities for a prime event structure by allowing arbitrary confusion. Our study builds on results related to fairness in event structures that are of interest per se. Executions are captured by the set of maximal configurations. We show that the information collected by observing only fair executions is confined in some sigma-algebra contained in the Borel sigma-algebra. Equality holds when confusion is finite, but inclusion is strict in general. We show the existence of an increasing chain of sub-sigma-algebras that capture the information collected when observing executions of increasing unfairness. We show that, if the event structure unfolds a safe net, then unfairness remains quantitatively bounded, that is, the above chain gets steady in finitely many steps. The construction of probabilities typically relies on a Kolmogorov extension argument. We prove that, when the event structure unfolds a safe net, then unfair executions all belong to some set of zero probability. This yields a new construction of Markovian probabilistic nets, carrying a natural interpretation that ``unfair executions possess zero probability''.
Document type :
Complete list of metadata

Cited literature [19 references]  Display  Hide  Download
Contributor : Albert Benveniste Connect in order to contact the contributor
Submitted on : Friday, November 14, 2008 - 1:39:48 PM
Last modification on : Friday, February 4, 2022 - 3:25:30 AM
Long-term archiving on: : Monday, June 7, 2010 - 10:57:34 PM


Files produced by the author(s)


  • HAL Id : inria-00338784, version 1


Samy Abbes, Albert Benveniste. Concurrency, sigma-algebras, and probabilistic fairness. [Research Report] RR-6724, INRIA. 2008, pp.24. ⟨inria-00338784⟩



Record views


Files downloads