Identification of Optimal Topography by Variational Data Assimilation

Eugene Kazantsev 1
1 MOISE - Modelling, Observations, Identification for Environmental Sciences
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : The use of data assimilation technique to identify optimal topography is discussed in frames of time-dependent motion governed by non-linear barotropic ocean model. Assimilation of artificially generated data allows to measure the influence of various error sources and to classify the impact of noise that is present in observational data and model parameters. The choice of assimilation window is discussed. Assimilating noisy data with longer windows provides higher accuracy of identified topography. The topography identified once by data assimilation can be successfully used for other model runs that start from other initial conditions and are situated in other parts of the model's attractor.
Type de document :
Article dans une revue
Journal of Physical Mathematics, Ashdin Publishing, 2009, 1, pp.58-80. 〈10.4303/jpm/S090702〉
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00340394
Contributeur : Eugene Kazantsev <>
Soumis le : lundi 1 décembre 2008 - 11:01:50
Dernière modification le : mercredi 11 avril 2018 - 01:58:51
Document(s) archivé(s) le : lundi 7 juin 2010 - 23:10:49

Fichiers

assimtopo.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Eugene Kazantsev. Identification of Optimal Topography by Variational Data Assimilation. Journal of Physical Mathematics, Ashdin Publishing, 2009, 1, pp.58-80. 〈10.4303/jpm/S090702〉. 〈inria-00340394〉

Partager

Métriques

Consultations de la notice

325

Téléchargements de fichiers

133