Parallel Geometric Algorithms for Multi-Core Computers

Abstract : Computers with multiple processor cores using shared memory are now ubiquitous. In this paper, we present several parallel geometric algorithms that specifically target this environment, with the goal of exploiting the additional computing power. The d-dimensional algorithms we describe are (a) spatial sorting of points, as is typically used for preprocessing before using incremental algorithms, (b) kd-tree construction, (c) axis-aligned box intersection computation, and finally (d) bulk insertion of points in Delaunay triangulations for mesh generation algorithms or simply computing Delaunay triangulations. We show experimental results for these algorithms in 3D, using our implementations based on the Computational Geometry Algorithms Library (CGAL, http://www.cgal.org/). This work is a step towards what we hope will become a parallel mode for CGAL, where algorithms automatically use the available parallel resources without requiring significant user intervention.
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00343804
Contributeur : Sylvain Pion <>
Soumis le : mercredi 3 décembre 2008 - 13:03:57
Dernière modification le : vendredi 27 avril 2018 - 13:54:02
Document(s) archivé(s) le : jeudi 11 octobre 2012 - 12:25:58

Fichier

RR-6749.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00343804, version 1

Collections

Citation

Vicente Batista, David Millman, Sylvain Pion, Johannes Singler. Parallel Geometric Algorithms for Multi-Core Computers. [Research Report] RR-6749, INRIA. 2008, pp.30. 〈inria-00343804〉

Partager

Métriques

Consultations de la notice

118537

Téléchargements de fichiers

429