A Non-Local Approach to Shape From Ambient Shading

Emmanuel Prados 1 Nitin Jindal 1 Stefano Soatto 2
1 PERCEPTION - Interpretation and Modelling of Images and Videos
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : We study the mathematical and numerical aspects of the estimation of the 3-D shape of a Lambertian scene seen under diffuse illumination. This problem is known as ''shape from ambient shading'' (SFAS), and its solution consists of integrating a strongly non-local and non-linear Integro-Partial Differential Equation (I-PDE). We provide a first analysis of this global I-PDE, whereas previous work had focused on a local version that ignored effects such as occlusion of the light field. We also design an original approximation scheme which, following Barles and Souganidis' theory, ensures the correctness of the numerical approximations, and discuss about some numerical issues.
Type de document :
Communication dans un congrès
Xue-Cheng Tai, Knut Mørken, Marius Lysaker, and Knut-Andreas Lie. SSVM 2009 - 2nd International Conference on Scale Space and Variational Methods in Computer Vision, Jun 2009, Voss, Norway. Springer-Verlag, 5567, pp.696-708, 2009, Lecture Notes in Computer Science. 〈10.1007/978-3-642-02256-2_58〉
Liste complète des métadonnées


https://hal.inria.fr/inria-00357071
Contributeur : Emmanuel Prados <>
Soumis le : jeudi 29 janvier 2009 - 14:27:49
Dernière modification le : jeudi 11 janvier 2018 - 06:22:00
Document(s) archivé(s) le : vendredi 12 octobre 2012 - 10:25:17

Fichiers

prados-jindal-etal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Emmanuel Prados, Nitin Jindal, Stefano Soatto. A Non-Local Approach to Shape From Ambient Shading. Xue-Cheng Tai, Knut Mørken, Marius Lysaker, and Knut-Andreas Lie. SSVM 2009 - 2nd International Conference on Scale Space and Variational Methods in Computer Vision, Jun 2009, Voss, Norway. Springer-Verlag, 5567, pp.696-708, 2009, Lecture Notes in Computer Science. 〈10.1007/978-3-642-02256-2_58〉. 〈inria-00357071〉

Partager

Métriques

Consultations de la notice

299

Téléchargements de fichiers

152