Economical Caching

Abstract : We study the management of buffers and storages in environments with unpredictably varying prices in a competitive analysis. In the economical caching problem, there is a storage with a certain capacity. For each time step, an online algorithm is given a price from the interval $[1,\alpha]$, a consumption, and possibly a buying limit. The online algorithm has to decide the amount to purchase from some commodity, knowing the parameter $\alpha$ but without knowing how the price evolves in the future. The algorithm can purchase at most the buying limit. If it purchases more than the current consumption, then the excess is stored in the storage; otherwise, the gap between consumption and purchase must be taken from the storage. The goal is to minimize the total cost. Interesting applications are, for example, stream caching on mobile devices with different classes of service, battery management in micro hybrid cars, and the efficient purchase of resources. First we consider the simple but natural class of algorithms that can informally be described as memoryless. We show that these algorithms cannot achieve a competitive ratio below $\sqrt{\alpha}$. Then we present a more sophisticated deterministic algorithm achieving a competitive ratio of \[\textstyle \frac{1}{\LambertW\left(\frac{1-\alpha}{e\alpha}\right)+1} \in \left[\frac{\sqrt{\alpha}}{\sqrt{2}}, \frac{\sqrt{\alpha}+1}{\sqrt{2}} \right] \enspace, \] where $W$ denotes the Lambert~W function. We prove that this algorithm is optimal and that not even randomized online algorithms can achieve a better competitive ratio. On the other hand, we show how to achieve a constant competitive ratio if the storage capacity of the online algorithm exceeds the storage capacity of an optimal offline algorithm by a factor of $\log \alpha$.
Type de document :
Communication dans un congrès
Susanne Albers and Jean-Yves Marion. 26th International Symposium on Theoretical Aspects of Computer Science STACS 2009, Feb 2009, Freiburg, Germany. IBFI Schloss Dagstuhl, pp.385-396, 2009, Proceedings of the 26th Annual Symposium on the Theoretical Aspects of Computer Science
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00359792
Contributeur : Publications Loria <>
Soumis le : mardi 10 février 2009 - 17:05:52
Dernière modification le : jeudi 8 février 2018 - 16:20:02
Document(s) archivé(s) le : mardi 8 juin 2010 - 22:06:45

Fichier

32-englert.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00359792, version 1

Collections

Citation

Matthias Englert, Heiko Röglin, Jacob Spönemann, Berthold Vöcking. Economical Caching. Susanne Albers and Jean-Yves Marion. 26th International Symposium on Theoretical Aspects of Computer Science STACS 2009, Feb 2009, Freiburg, Germany. IBFI Schloss Dagstuhl, pp.385-396, 2009, Proceedings of the 26th Annual Symposium on the Theoretical Aspects of Computer Science. 〈inria-00359792〉

Partager

Métriques

Consultations de la notice

92

Téléchargements de fichiers

111