Gossip-based computation of a Gaussian mixture model for distributed multimedia indexing

Abstract : The present paper deals with pattern recognition in a distributed computing context of the peer-to-peer type, that should be more and more interesting for multimedia data indexing and retrieval. Our goal is estimating of classconditional probability densities, that take the form of Gaussian mixture models (GMM). Originally, we propagate GMMs in a decentralized fashion (gossip) in a network, and aggregate GMMs from various sources, through a technique that only involves little computation and that makes parcimonious usage of the network resource, as model parameters rather than data are transmitted. The aggregation is based on iterative optimization of an approximation of a KL divergence allowing closed-form computation between mixture models. Experimental results demonstrate the scheme to the case of speaker recognition.
Type de document :
Article dans une revue
IEEE Transactions on Multimedia, Institute of Electrical and Electronics Engineers, 2008, 10 (3), pp.385-392
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00368854
Contributeur : Marc Gelgon <>
Soumis le : mardi 17 mars 2009 - 17:39:01
Dernière modification le : mercredi 11 avril 2018 - 02:00:00
Document(s) archivé(s) le : vendredi 12 octobre 2012 - 13:45:25

Fichier

MM001325_revised.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00368854, version 1

Collections

Citation

Afshin Nikseresht, Marc Gelgon. Gossip-based computation of a Gaussian mixture model for distributed multimedia indexing. IEEE Transactions on Multimedia, Institute of Electrical and Electronics Engineers, 2008, 10 (3), pp.385-392. 〈inria-00368854〉

Partager

Métriques

Consultations de la notice

327

Téléchargements de fichiers

161