Skip to Main content Skip to Navigation
Conference papers

Solving Sparse Linear Inverse Problems: Analysis of Reweighted l1 and l2 Methods

Abstract : A variety of practical methods have recently been introduced for finding maximally sparse representations from overcomplete dictionaries, a central computational task in compressed sensing and source localization applications as well as numerous others. Many of the underlying algorithms rely on iterative reweighting schemes that produce more focal estimates as optimization progresses. Two such variants are iterative reweighted l1 and l2 minimization; however, some properties related to convergence and sparse estimation, as well as possible generalizations, are still not clearly understood or fully exploited. In this paper, we make the distinction between separable and nonseparable iterative reweighting algorithms. The vast majority of existing methods are separable, meaning the weighting of a given coefficient at each iteration is only a function of that individual coefficient from the previous iteration (as opposed to dependency on all coefficients). We examine two such separable reweighting schemes: an l2 method from Chartand and Yin (2008) and an l1 approach from Cand`es et al. (2008), elaborating on convergence results and explicit connections between them. We then explore an interesting non-separable variant that can be implemented via either l2 or l1 reweighting and show several desirable properties relevant to sparse recovery. For the former, we show a direct connection with Chartrand and Yin's approach. For the latter, we demonstrate two desirable properties: (i) each iteration can only improve the sparsity and (ii), for any dictionary and sparsity profile, there will always exist cases where non-separable `1 reweighting improves over standard `1 minimization.
Complete list of metadata

Cited literature [20 references]  Display  Hide  Download
Contributor : Ist Rennes <>
Submitted on : Thursday, March 19, 2009 - 4:18:39 PM
Last modification on : Thursday, July 25, 2019 - 3:06:02 PM
Long-term archiving on: : Tuesday, June 8, 2010 - 11:39:45 PM


Files produced by the author(s)


  • HAL Id : inria-00369406, version 1



David Wipf, Srikantan Nagarajan. Solving Sparse Linear Inverse Problems: Analysis of Reweighted l1 and l2 Methods. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Inria Rennes - Bretagne Atlantique, Apr 2009, Saint Malo, France. ⟨inria-00369406⟩



Record views


Files downloads