Local orthogonal greedy pursuits for scalable sparse approximation of large signals with shift-invariant dictionaries

Abstract : We propose a way to increase the speed of greedy pursuit algorithms for scalable sparse signal approximation. It is designed for dictionaries with localized atoms, such as timefrequency dictionaries. When applied to OMP, our modification leads to an approximation as good as OMP while keeping the computation time close to MP. Numerical experiments with a large audio signal show that, compared to OMP and Gradient Pursuit, the proposed algorithm runs in over 500 less time while leaving the approximation error almost unchanged.
Type de document :
Communication dans un congrès
Rémi Gribonval. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00369531
Contributeur : Ist Rennes <>
Soumis le : vendredi 20 mars 2009 - 11:23:49
Dernière modification le : lundi 19 février 2018 - 09:55:34
Document(s) archivé(s) le : jeudi 10 juin 2010 - 17:35:45

Fichier

67.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00369531, version 1

Collections

Citation

Boris Mailhé, Rémi Gribonval, Frédéric Bimbot, Pierre Vandergheynst. Local orthogonal greedy pursuits for scalable sparse approximation of large signals with shift-invariant dictionaries. Rémi Gribonval. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009. 〈inria-00369531〉

Partager

Métriques

Consultations de la notice

289

Téléchargements de fichiers

182