BM3D Image Denoising with Shape-Adaptive Principal Component Analysis

Abstract : We propose an image denoising method that ex- ploits nonlocal image modeling, principal component analysis (PCA), and local shape-adaptive anisotropic estimation. The nonlocal modeling is exploited by grouping similar image patches in 3-D groups. The denoising is performed by shrinkage of the spectrum of a 3-D transform applied on such groups. The effectiveness of the shrinkage depends on the ability of the transform to sparsely represent the true-image data, thus separating it from the noise. We propose to improve the sparsity in two aspects. First, we employ image patches (neighborhoods) which can have data-adaptive shape. Second, we propose PCA on these adaptive-shape neighborhoods as part of the employed 3-D transform. The PCA bases are obtained by eigenvalue decompo- sition of empirical second-moment matrices that are estimated from groups of similar adaptive-shape neighborhoods. We show that the proposed method is competitive and outperforms some of the current best denoising methods, especially in preserving image details and introducing very few artifacts.
Type de document :
Communication dans un congrès
Rémi Gribonval. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00369582
Contributeur : Ist Rennes <>
Soumis le : vendredi 20 mars 2009 - 13:59:35
Dernière modification le : lundi 20 juin 2016 - 14:10:32
Document(s) archivé(s) le : jeudi 10 juin 2010 - 17:44:09

Fichier

33.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00369582, version 1

Collections

Citation

Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, Karen Egiazarian. BM3D Image Denoising with Shape-Adaptive Principal Component Analysis. Rémi Gribonval. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009. 〈inria-00369582〉

Partager

Métriques

Consultations de la notice

2055

Téléchargements de fichiers

2624