Image Restoration with Compound Regularization Using a Bregman Iterative Algorithm

Abstract : Some imaging inverse problems may require the solution to simultaneously exhibit properties that are not enforceable by a single regularizer. One way to attain this goal is to use a linear combinations of regu- larizers, thus encouraging the solution to simultaneously exhibit the characteristics enforced by each individual regularizer. In this paper, we address the optimization problem resulting from this type of compound regular- ization using the split Bregman iterative method. The resulting algorithm only requires the ability to e±ciently compute the denoising operator associated to each in- volved regularizer. Convergence is guaranteed by the theory behind the Bregman iterative approach to solving constrained optimization problems. In experiments with images that are simultaneously sparse and piece-wise smooth, the proposed algorithm successfully solves the deconvolution problem with a compound regularizer that is the linear combination of the `1 and total variation (TV) regularizers. The lowest MSE obtained with the (`1+TV) regularizer is lower than that obtained with TV or `1 alone, for any value of the corresponding regularization parameters.
Type de document :
Communication dans un congrès
Rémi Gribonval. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00369598
Contributeur : Ist Rennes <>
Soumis le : vendredi 20 mars 2009 - 14:25:56
Dernière modification le : lundi 20 juin 2016 - 14:10:32
Document(s) archivé(s) le : vendredi 12 octobre 2012 - 14:01:44

Fichier

52.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00369598, version 1

Collections

Citation

Manya V. Afonso, José M. Bioucas-Dias, Mario A. T. Figueiredo. Image Restoration with Compound Regularization Using a Bregman Iterative Algorithm. Rémi Gribonval. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009. 〈inria-00369598〉

Partager

Métriques

Consultations de la notice

196

Téléchargements de fichiers

306