A Compressed Sensing Approach for Biological Microscopy Image Denoising

Abstract : Compressed Sensing (CS) provides a new framework for signal sampling, exploiting redundancy and sparsity in incoherent bases. For images with homogeneous objects and background, CS provides an optimal reconstruction framework from a set of random projections in the Fourier domain, while constraining bounded variations in the spatial domain. In this paper, we propose a CS-based method to simultaneously acquire and denoise data based on statistical properties of the CS optimality, signal modeling and characteristics of noise reconstruction. Our approach has several advantages over traditional denoising methods, since it can under-sample, recover and denoise images simultaneously. We demonstrate with simulated and practical experiments on fluorescence images that we obtain images with similar or increased SNR even with reduced exposure times. Such results open the gate to new mathematical imaging protocols, offering the opportunity to reduce exposure time along with photo-toxicity and photo-bleaching and assist biological applications relying on fluorescence microscopy.
Type de document :
Communication dans un congrès
Rémi Gribonval. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00369642
Contributeur : Ist Rennes <>
Soumis le : vendredi 20 mars 2009 - 15:25:08
Dernière modification le : jeudi 11 janvier 2018 - 06:23:38
Document(s) archivé(s) le : vendredi 12 octobre 2012 - 14:02:04

Fichier

42.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00369642, version 1

Citation

Marcio M. Marim, Elsa D. Angelini, Jean-Christophe Olivo-Marin. A Compressed Sensing Approach for Biological Microscopy Image Denoising. Rémi Gribonval. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009. 〈inria-00369642〉

Partager

Métriques

Consultations de la notice

268

Téléchargements de fichiers

368