Incremental Learning of Statistical Motion Patterns with Growing Hidden Markov Models

Abstract : Modeling and predicting human and vehicle motion is an active research domain. Due to the difficulty of modeling the various factors that determine motion (e.g. internal state, perception, etc.) this is often tackled by applying machine learning techniques to build a statistical model, using as input a collection of trajectories gathered through a sensor (e.g. camera, laser scanner), and then using that model to predict further motion. Unfortunately, most current techniques use off-line learning algorithms, meaning that they are not able to learn new motion patterns once the learning stage has finished. In this paper, we present an approach where motion patterns can be learned incrementally, and in parallel with prediction. Our work is based on a novel extension to Hidden Markov Models - called Growing Hidden Markov models - which gives us the ability to learn incrementally both the parameters and the structure of the model.
Type de document :
Article dans une revue
IEEE Transactions on Intelligent Transportation Systems, IEEE, 2009
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00379444
Contributeur : Thierry Fraichard <>
Soumis le : mardi 28 avril 2009 - 16:06:03
Dernière modification le : jeudi 11 janvier 2018 - 06:21:47
Document(s) archivé(s) le : jeudi 10 juin 2010 - 18:56:49

Fichier

09-ieeeits-dizan-etal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00379444, version 1

Collections

Citation

Dizan Alejandro Vasquez Govea, Thierry Fraichard, Christian Laugier. Incremental Learning of Statistical Motion Patterns with Growing Hidden Markov Models. IEEE Transactions on Intelligent Transportation Systems, IEEE, 2009. 〈inria-00379444〉

Partager

Métriques

Consultations de la notice

515

Téléchargements de fichiers

358