Skip to Main content Skip to Navigation
Conference papers

Benchmarking a BI-Population CMA-ES on the BBOB-2009 Noisy Testbed

Nikolaus Hansen 1, 2
1 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : We benchmark the BI-population CMA-ES on the BBOB-2009 noisy functions testbed. BI-population refers to a multistart strategy with equal budgets for two interlaced restart strategies, one with an increasing population size and one with varying small population sizes. The latter is presumably of little use on a noisy testbed. The BI-population CMA-ES could solve 29, 27 and 26 out of 30 functions in search space dimension 5, 10 and 20 respectively. The time to find the solution ranges between $100 D$ and $10^5 D^2$ objective function evaluations, where $D$ is the search space dimension.
Document type :
Conference papers
Complete list of metadata
Contributor : Nikolaus Hansen Connect in order to contact the contributor
Submitted on : Thursday, May 7, 2009 - 1:15:36 PM
Last modification on : Thursday, July 8, 2021 - 3:48:40 AM
Long-term archiving on: : Thursday, June 10, 2010 - 8:15:03 PM


Files produced by the author(s)


  • HAL Id : inria-00382101, version 1



Nikolaus Hansen. Benchmarking a BI-Population CMA-ES on the BBOB-2009 Noisy Testbed. ACM-GECCO Genetic and Evolutionary Computation Conference, Jul 2009, Montreal, Canada. ⟨inria-00382101⟩



Record views


Files downloads