Turbulence power laws and inverse motion modeling in images

Abstract : Based on scaling laws describing the statistical structure of turbulent motion across scales, we propose a multiscale and non-parametric regularizer for the estimation of velocity fields of bidimensional or quasi bidimensional flows from image sequences. Spatial regularization principle used in order to close the ill-posed nature of motion estimation is achieved by constraining motion increments to behave through scales as the most likely self-similar process given some image data. In a first level of inference, the estimation formulated as a hard constrained minimization problem is optimally solved by taking advantage of lagrangian duality. It results in a collection of first-order regularizers acting at different scales. This estimation is non-parametric since the optimal regularization parameters at the different scales are obtained by solving the dual problem. In a second level of inference, the most likely self-similar model given the data is optimally selected by maximization of bayesian evidence. The motion estimator accuracy is first evaluated on a synthetic image sequence of simulated bidimensional turbulence and then on a real meteorological image sequence. Results obtained with the proposed physical based approach exceeds the best state of the art results. Furthermore, selecting from images the most evident multiscale motion model enables the recovery of physical quantities which are of major interest for turbulence characterization.
Type de document :
Rapport
[Research Report] RR-6948, INRIA. 2009
Liste complète des métadonnées

Littérature citée [41 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00390426
Contributeur : Patrick Héas <>
Soumis le : mardi 2 juin 2009 - 10:25:11
Dernière modification le : mercredi 1 août 2018 - 15:02:03
Document(s) archivé(s) le : lundi 15 octobre 2012 - 11:35:47

Fichier

RR-6948.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00390426, version 1

Collections

Citation

Patrick Héas, Mémin Etienne, Dominique Heitz, Pablo D. Mininni. Turbulence power laws and inverse motion modeling in images. [Research Report] RR-6948, INRIA. 2009. 〈inria-00390426〉

Partager

Métriques

Consultations de la notice

225

Téléchargements de fichiers

113