A Spiking Neural Network for Gas Discrimination using a Tin Oxide Sensor Array

Maxime Ambard 1 Bin Guo 2 Dominique Martinez 1 Amine Bermak 2
1 CORTEX - Neuromimetic intelligence
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : We propose a bio-inspired signal processing method for odor discrimination. A spiking neural network is trained with a supervised learning rule so as to classify the analog outputs from a monolithic 4×4 tin oxide gas sensor array implemented in our in-house 5 µm process. This scheme has been sucessfully tested on a discrimination task between 4 gases (hydrogen, ethanol, carbon monoxide, methane). Performance compares favorably to the one obtained with a common statistical classifier. Moreover, the simplicity of our method makes it well suited for building dedicated hardware for processing data from gas sensor arrays.
Type de document :
Communication dans un congrès
4th IEEE International Symposium on Electronic Design, Test & Applications - DELTA 2008, Jan 2008, Hong-Kong, Hong Kong SAR China. 2008
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00401777
Contributeur : Maxime Ambard <>
Soumis le : lundi 6 juillet 2009 - 10:09:02
Dernière modification le : jeudi 11 janvier 2018 - 06:19:48
Document(s) archivé(s) le : mardi 15 juin 2010 - 19:27:38

Fichier

DELTA_2008.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : inria-00401777, version 1

Collections

Citation

Maxime Ambard, Bin Guo, Dominique Martinez, Amine Bermak. A Spiking Neural Network for Gas Discrimination using a Tin Oxide Sensor Array. 4th IEEE International Symposium on Electronic Design, Test & Applications - DELTA 2008, Jan 2008, Hong-Kong, Hong Kong SAR China. 2008. 〈inria-00401777〉

Partager

Métriques

Consultations de la notice

204

Téléchargements de fichiers

153