Particle methods: An introduction with applications

Pierre Del Moral 1, 2 Arnaud Doucet 3
2 ALEA - Advanced Learning Evolutionary Algorithms
Inria Bordeaux - Sud-Ouest, UB - Université de Bordeaux, CNRS - Centre National de la Recherche Scientifique : UMR5251
Abstract : Interacting particle methods are increasingly used to sample from complex high-dimensional distributions. They have found a wide range of applications in applied probability, Bayesian statistics and information engineering. Understanding rigorously these new Monte Carlo simulation tools leads to fascinating mathematics related to Feynman-Kac path integral theory and their interacting particle interpretations. In these lecture notes, we provide a pedagogical introduction to the stochastic modeling and the theoretical analysis of these particle algorithms. We also illustrate these methods through several applications including random walk confinements, particle absorption models, nonlinear filtering, stochastic optimization, combinatorial counting and directed polymer models.
Type de document :
Rapport
[Research Report] RR-6991, INRIA. 2009, pp.46
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00403917
Contributeur : Pierre Del Moral <>
Soumis le : mardi 14 juillet 2009 - 08:50:53
Dernière modification le : jeudi 11 janvier 2018 - 06:22:36
Document(s) archivé(s) le : lundi 15 octobre 2012 - 15:20:26

Fichier

RR-6991.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00403917, version 1

Collections

Citation

Pierre Del Moral, Arnaud Doucet. Particle methods: An introduction with applications. [Research Report] RR-6991, INRIA. 2009, pp.46. 〈inria-00403917〉

Partager

Métriques

Consultations de la notice

1168

Téléchargements de fichiers

3586