Memory-Enhanced Evolutionary Robotics: The Echo State Network Approach

Cédric Hartland 1 Nicolas Bredeche 1, 2, 3 Michèle Sebag 3
2 TANC - Algorithmic number theory for cryptology
Inria Saclay - Ile de France, LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau]
3 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : Interested in Evolutionary Robotics, this paper focuses on the acquisition and exploitation of memory skills. The targeted task is a well-studied benchmark problem, the Tolman maze, requiring in principle the robotic controller to feature some (limited) counting abilities. An elaborate experimental setting is used to enforce the controller generality and prevent opportunistic evolution from mimicking deliberative skills through smart reactive heuristics. The paper compares the prominent NEAT approach, achieving the non-parametric optimization of Neural Nets, with the evolutionary optimization of Echo State Networks, pertaining to the recent field of Reservoir Computing. While both search spaces offer a sufficient expressivity and enable the modelling of complex dynamic systems, the latter one is amenable to robust parametric, linear optimization with Covariance Matrix Adaptation-Evolution Strategies.
Complete list of metadatas

https://hal.inria.fr/inria-00413238
Contributor : Nicolas Bredeche <>
Submitted on : Tuesday, November 3, 2009 - 12:01:36 PM
Last modification on : Wednesday, March 27, 2019 - 4:41:29 PM
Long-term archiving on : Thursday, June 30, 2011 - 11:47:37 AM

File

cec2009tolman.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : inria-00413238, version 1

Collections

Citation

Cédric Hartland, Nicolas Bredeche, Michèle Sebag. Memory-Enhanced Evolutionary Robotics: The Echo State Network Approach. Congress on Evolutionary Computation (CEC 2009), 2009, Trondheim, Norway. ⟨inria-00413238⟩

Share

Metrics

Record views

313

Files downloads

298