The Voronoi diagram of three arbitrary lines in R3

Hazel Everett 1 Christian Gillot 1 Daniel Lazard 2 Sylvain Lazard 1 Marc Pouget 1
1 VEGAS - Effective Geometric Algorithms for Surfaces and Visibility
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
2 SALSA - Solvers for Algebraic Systems and Applications
LIP6 - Laboratoire d'Informatique de Paris 6, Inria Paris-Rocquencourt
Abstract : In this paper we study the Voronoi diagram of lines in R3 . The Voronoi diagram of three lines in general position was studied in [8]. In this paper we complete this work by presenting a complete characterization of the Voronoi diagram of three arbitrary lines in R3 . As in the general case, we prove that the arcs of trisectors are always monotonic in some direction and we show how to separate the connected components and to sort points along each arc of a trisector using only rational linear semi-algebraic tests. These results are important for the robust computation of the Voronoi diagram of polyhedra.
Type de document :
Communication dans un congrès
25th European Workshop on Computational Geometry - EuroCG'09, Mar 2009, Bruxelles, Belgium. pp.297-300, 2009
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00425378
Contributeur : Marc Pouget <>
Soumis le : mercredi 21 octobre 2009 - 10:56:50
Dernière modification le : vendredi 31 août 2018 - 09:25:54
Document(s) archivé(s) le : mardi 16 octobre 2012 - 12:31:26

Fichier

EuroCG09.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00425378, version 1

Collections

Citation

Hazel Everett, Christian Gillot, Daniel Lazard, Sylvain Lazard, Marc Pouget. The Voronoi diagram of three arbitrary lines in R3. 25th European Workshop on Computational Geometry - EuroCG'09, Mar 2009, Bruxelles, Belgium. pp.297-300, 2009. 〈inria-00425378〉

Partager

Métriques

Consultations de la notice

455

Téléchargements de fichiers

186