Implementation of the AdaBoost Algorithm for Large Scale Distributed Environments: Comparing JavaSpace and MPJ

Virginie Galtier 1 Stéphane Genaud 2 Stéphane Vialle 1
2 ALGORILLE - Algorithms for the Grid
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : This paper presents the parallelization of a machine learning method, called the adaboost algorithm. The parallel algorithm follows a dynamically load-balanced master-worker strategy, which is parameterized by the granularity of the tasks distributed to workers. We first show the benefits of this version with heterogeneous processors. Then, we study the application in a real, geographically distributed environment, hence adding network latencies to the execution. Performances of the application using more than a hundred processes are analyzed in both JavaSpace and {\pmpi}. We therefore present an head-to-head comparison of two parallel programming models. We study for each case the granularities yielding the best performance. We show that current network technologies enable to obtain interesting speedups in many situations for such an application, even when using a virtual shared memory paradigm in a large-scale distributed environment.
Type de document :
Communication dans un congrès
Fifteenth International Conference on Parallel and Distributed Systems (ICPADS'09), Dec 2009, Shenzhen, China. IEEE CS, 2009, 〈10.1109/ICPADS.2009.67〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00425518
Contributeur : Stéphane Genaud <>
Soumis le : mercredi 21 octobre 2009 - 21:14:05
Dernière modification le : jeudi 29 mars 2018 - 11:06:04

Identifiants

Citation

Virginie Galtier, Stéphane Genaud, Stéphane Vialle. Implementation of the AdaBoost Algorithm for Large Scale Distributed Environments: Comparing JavaSpace and MPJ. Fifteenth International Conference on Parallel and Distributed Systems (ICPADS'09), Dec 2009, Shenzhen, China. IEEE CS, 2009, 〈10.1109/ICPADS.2009.67〉. 〈inria-00425518〉

Partager

Métriques

Consultations de la notice

325