L2R: A Logical Method for Reference Reconciliation

Fatiha Saïs 1, 2, * Nathalie Pernelle 1, 2 Marie-Christine Rousset 3
* Auteur correspondant
1 GEMO - Integration of data and knowledge distributed over the web
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : The reference reconciliation problem consists in decid- ing whether different identifiers refer to the same data, i.e., correspond to the same world entity. The L2R sys- tem exploits the semantics of a rich data model, which extends RDFS by a fragment of OWL-DL and SWRL rules. In L2R, the semantics of the schema is translated into a set of logical rules of reconciliation, which are then used to infer correct decisions both of reconcilia- tion and no reconciliation. In contrast with other ap- proaches, the L2R method has a precision of 100% by construction. First experiments show promising results for recall, and most importantly significant increases when rules are added.
Type de document :
Communication dans un congrès
Twenty-Second AAAI Conference on Artificial Intelligence, Jul 2007, Vancouver, British Columbia, Canada. pp.2007, 2007
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00433004
Contributeur : Fatiha Saïs <>
Soumis le : mercredi 18 novembre 2009 - 10:55:18
Dernière modification le : jeudi 5 avril 2018 - 12:30:12
Document(s) archivé(s) le : jeudi 17 juin 2010 - 18:31:08

Fichier

L2RAAAI07.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00433004, version 1

Collections

Citation

Fatiha Saïs, Nathalie Pernelle, Marie-Christine Rousset. L2R: A Logical Method for Reference Reconciliation. Twenty-Second AAAI Conference on Artificial Intelligence, Jul 2007, Vancouver, British Columbia, Canada. pp.2007, 2007. 〈inria-00433004〉

Partager

Métriques

Consultations de la notice

396

Téléchargements de fichiers

222