A Bayesian network for combining descriptors: application to symbol recognition

Sabine Barrat 1 Salvatore Tabbone 1
1 QGAR - Querying Graphics through Analysis and Recognition
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : In this paper, we propose a descriptor combination method, which enables to improve significantly the recognition rate compared to the recognition rates obtained by each descriptor. This approach is based on a probabilistic graphical model. This model also enables to handle both discrete and continuous-valued variables. In fact, in order to improve the recognition rate, we have combined two kinds of features: discrete features (corresponding to shapes measures) and continuous features (corresponding to shape descriptors). In order to solve the dimensionality problem due to the large dimension of visual features, we have adapted a variable selection method. Experimental results, obtained in a supervised learning context, on noisy and occluded symbols, show the feasibility of the approach.
Type de document :
Article dans une revue
International Journal on Document Analysis and Recognition, Springer Verlag, 2009, 13 (1), pp.65-75. 〈10.1007/s10032-009-0103-y〉
Liste complète des métadonnées

Littérature citée [43 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00437492
Contributeur : Sabine Barrat <>
Soumis le : lundi 30 novembre 2009 - 16:52:09
Dernière modification le : jeudi 11 janvier 2018 - 06:19:59
Document(s) archivé(s) le : jeudi 17 juin 2010 - 20:15:07

Fichier

fulltext.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Sabine Barrat, Salvatore Tabbone. A Bayesian network for combining descriptors: application to symbol recognition. International Journal on Document Analysis and Recognition, Springer Verlag, 2009, 13 (1), pp.65-75. 〈10.1007/s10032-009-0103-y〉. 〈inria-00437492〉

Partager

Métriques

Consultations de la notice

222

Téléchargements de fichiers

235