On the Complexity of Sets of Free Lines and Line Segments Among Balls in Three Dimensions

Marc Glisse 1 Sylvain Lazard 2
1 GEOMETRICA - Geometric computing
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Saclay - Ile de France
2 VEGAS - Effective Geometric Algorithms for Surfaces and Visibility
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : We present two new fundamental lower bounds on the worst-case combinatorial complexity of sets of free lines and sets of maximal free line segments in the presence of balls in three dimensions. We first prove that the set of maximal non-occluded line segments among $n$ disjoint \emph{unit} balls has complexity $\Omega(n^4)$, which matches the trivial $O(n^4)$ upper bound. This improves the trivial $\Omega(n^2)$ bound and also the $\Omega(n^3)$ lower bound for the restricted setting of arbitrary-size balls [Devillers and Ramos, 2001]. This result settles, negatively, the natural conjecture that this set of line segments, or, equivalently, the visibility complex, has smaller worst-case complexity for disjoint fat objects than for skinny triangles. We also prove an $\Omega(n^3)$ lower bound on the complexity of the set of non-occluded lines among $n$ balls of arbitrary radii, improving on the trivial $\Omega(n^2)$ bound. This new bound almost matches the recent $O(n^{3+\epsilon})$ upper bound [Rubin, 2010].
Type de document :
Communication dans un congrès
26th annual symposium on Computational geometry - SoCG 2010, Jun 2010, Snowbird, Utah, United States. ACM Press, 2010
Liste complète des métadonnées


https://hal.inria.fr/inria-00442751
Contributeur : Sylvain Lazard <>
Soumis le : mercredi 17 mars 2010 - 16:46:46
Dernière modification le : jeudi 9 février 2017 - 15:47:13
Document(s) archivé(s) le : mercredi 30 novembre 2016 - 15:15:24

Fichier

HAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00442751, version 2

Collections

Citation

Marc Glisse, Sylvain Lazard. On the Complexity of Sets of Free Lines and Line Segments Among Balls in Three Dimensions. 26th annual symposium on Computational geometry - SoCG 2010, Jun 2010, Snowbird, Utah, United States. ACM Press, 2010. <inria-00442751v2>

Partager

Métriques

Consultations de
la notice

340

Téléchargements du document

124