Skip to Main content Skip to Navigation
Conference papers

AMS Without 4-Wise Independence on Product Domains

Abstract : In their seminal work, Alon, Matias, and Szegedy introduced several sketching techniques, including showing that 4-wise independence is sufficient to obtain good approximations of the second frequency moment. In this work, we show that their sketching technique can be extended to product domains $[n]^k$ by using the product of 4-wise independent functions on $[n]$. Our work extends that of Indyk and McGregor, who showed the result for $k = 2$. Their primary motivation was the problem of identifying correlations in data streams. In their model, a stream of pairs $(i,j) \in [n]^2$ arrive, giving a joint distribution $(X,Y)$, and they find approximation algorithms for how close the joint distribution is to the product of the marginal distributions under various metrics, which naturally corresponds to how close $X$ and $Y$ are to being independent. By using our technique, we obtain a new result for the problem of approximating the $\ell_2$ distance between the joint distribution and the product of the marginal distributions for $k$-ary vectors, instead of just pairs, in a single pass. Our analysis gives a randomized algorithm that is a $(1 \pm \epsilon)$ approximation (with probability $1-\delta$) that requires space logarithmic in $n$ and $m$ and proportional to $3^k$.
Document type :
Conference papers
Complete list of metadata

Cited literature [15 references]  Display  Hide  Download
Contributor : Publications Loria Connect in order to contact the contributor
Submitted on : Thursday, February 11, 2010 - 10:55:32 AM
Last modification on : Thursday, September 2, 2021 - 1:50:01 PM
Long-term archiving on: : Friday, June 18, 2010 - 8:11:23 PM


Files produced by the author(s)


  • HAL Id : inria-00455776, version 1



Vladimir Braverman, Kai-Min Chung, Zhenming Liu, Michael Mitzenmacher, Rafail Ostrovsky. AMS Without 4-Wise Independence on Product Domains. 27th International Symposium on Theoretical Aspects of Computer Science - STACS 2010, Inria Nancy Grand Est & Loria, Mar 2010, Nancy, France. pp.119-130. ⟨inria-00455776⟩



Record views


Files downloads