Multichannel SAR Image Classification by Finite Mixtures, Copula Theory and Markov Random Fields

Abstract : In this paper we develop a supervised classification approach for medium and high resolution multichannel synthetic aperture radar (SAR) amplitude images. The proposed technique combines finite mixture modeling for probability density function estimation, copulas for multivariate distribution modeling and a Markov random field (MRF) approach to Bayesian classification. The novelty of this research is in introduction of copulas to classification of D-channel SAR, with D>2, within the mainframe of finite mixtures - MRF approach. This generalization results in a flexible and well performing multichannel SAR classification technique. Its accuracy is validated on several multichannel Quad-pol RADARSAT-2 images and compared to benchmark classification techniques.
Type de document :
Communication dans un congrès
International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt), Jul 2010, Chamonix, France. 2010
Liste complète des métadonnées


https://hal.inria.fr/inria-00495557
Contributeur : Vladimir Krylov <>
Soumis le : lundi 28 juin 2010 - 11:00:15
Dernière modification le : mercredi 14 décembre 2016 - 01:06:05
Document(s) archivé(s) le : jeudi 30 septembre 2010 - 17:44:53

Fichier

krylov_MaxEnt2010.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00495557, version 1

Collections

Citation

Vladimir Krylov, Gabriele Moser, Sebastiano B. Serpico, Josiane Zerubia. Multichannel SAR Image Classification by Finite Mixtures, Copula Theory and Markov Random Fields. International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt), Jul 2010, Chamonix, France. 2010. <inria-00495557>

Partager

Métriques

Consultations de
la notice

235

Téléchargements du document

122