Combining face detection and people tracking in video sequences

Abstract : Face detection algorithms are widely used in computer vision as they provide fast and reliable results depending on the application domain. A multi view approach is here presented to detect frontal and profile pose of people face using Histogram of Oriented Gradients, i.e. HOG, features. A K-mean clustering technique is used in a cascade of HOG feature classifiers to detect faces. The evaluation of the algorithm shows similar performance in terms of detection rate as state of the art algorithms. Moreover, unlike state of the art algorithms, our system can be quickly trained before detection is possible. Performance is considerably increased in terms of lower computational cost and lower false detection rate when combined with motion constraint given by moving objects in video sequences. The detected HOG features are integrated within a tracking framework and allow reliable face tracking results in several tested surveillance video sequences.
Type de document :
Communication dans un congrès
The 3rd International Conference on Imaging for Crime Detection and Prevention - ICDP09, Dec 2009, Kingston Upon Thames (London), United Kingdom. pp.1, 2009
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/inria-00502749
Contributeur : Etienne Corvee <>
Soumis le : jeudi 15 juillet 2010 - 15:53:47
Dernière modification le : mardi 24 juillet 2018 - 15:48:06
Document(s) archivé(s) le : vendredi 22 octobre 2010 - 11:44:40

Identifiants

  • HAL Id : inria-00502749, version 1

Collections

Citation

Etienne Corvee, François Bremond. Combining face detection and people tracking in video sequences. The 3rd International Conference on Imaging for Crime Detection and Prevention - ICDP09, Dec 2009, Kingston Upon Thames (London), United Kingdom. pp.1, 2009. 〈inria-00502749〉

Partager

Métriques

Consultations de la notice

415

Téléchargements de fichiers

1337