Data Mining on large Video Recordings

Abstract : The exploration of large video data is a task which is now possible because of the advances made on object detection and tracking. Data mining techniques such as clustering are typically employed. Such techniques have mainly been applied for segmentation/indexation of video but knowledge extraction on the activity contained in the video has been only partially addressed. In this paper we present how video information is processed with the ultimate aim to achieve knowledge discovery of people activity in the video. First, objects of interest are detected in real time. Then, in an off-line process, the information related to detected objects is set into a model format suitable for knowledge representation and discovery. We then apply two clustering processes: 1) Agglomerative hierarchical clustering to find the main trajectory patterns of people in the video 2) Relational analysis clustering, which we employ to extract spatio-temporal relations between people and contextual objects in the scene. We present results obtained on real videos of the Torino metro (Italy).
Type de document :
Communication dans un congrès
Veille Stratégique Scientifique et Technologique VSST 2007, Oct 2007, Marrakech, Morocco. 2007
Liste complète des métadonnées
Contributeur : Jose Luis Patino Vilchis <>
Soumis le : vendredi 16 juillet 2010 - 14:34:47
Dernière modification le : mardi 24 juillet 2018 - 15:48:06
Document(s) archivé(s) le : vendredi 22 octobre 2010 - 14:47:53


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00503053, version 1



Hamid Benhadda, Jose Luis Patino Vilchis, Etienne Corvee, François Bremond, Monique Thonnat. Data Mining on large Video Recordings. Veille Stratégique Scientifique et Technologique VSST 2007, Oct 2007, Marrakech, Morocco. 2007. 〈inria-00503053〉



Consultations de la notice


Téléchargements de fichiers