Bounds on the minimum distance of the duals of BCH codes

Abstract : We consider duals of BCH codes of length p^m-1 over GF(p). A lower bound on their minimum distance is found via the adaptation of the Weil bound to cyclic codes. However, this bound is of no significance for roughly half of these codes. We partially fill this gap by giving a lower bound for an infinite class of duals of BCH codes. We also present a lower bound obtained with an algorithm due to Massey and Schaub (1988). In the case of binary codes of length 127 and 255, the results are surprisingly higher than all previously known bounds
Type de document :
Communication dans un congrès
1994 IEEE International Symposium on Information Theory, Jun 1994, Trondheim, Norway. IEEE, pp.43, 1994, 1994 IEEE International Symposium on Information Theory, Proceedings. 〈http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=394928〉. 〈10.1109/ISIT.1994.394928〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00509482
Contributeur : Daniel Augot <>
Soumis le : mardi 30 novembre 2010 - 13:01:23
Dernière modification le : vendredi 25 mai 2018 - 12:02:03
Document(s) archivé(s) le : mardi 1 mars 2011 - 02:21:12

Fichier

ISIT1994-levy.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Daniel Augot, Françoise Levy-Dit-Vehel. Bounds on the minimum distance of the duals of BCH codes. 1994 IEEE International Symposium on Information Theory, Jun 1994, Trondheim, Norway. IEEE, pp.43, 1994, 1994 IEEE International Symposium on Information Theory, Proceedings. 〈http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=394928〉. 〈10.1109/ISIT.1994.394928〉. 〈inria-00509482〉

Partager

Métriques

Consultations de la notice

140

Téléchargements de fichiers

146