Reducing the Cold-Start Problem in Content Recommendation Through Opinion Classification

Abstract : Like search engines, recommender systems have become a tool that cannot be ignored by websites with a large selection of products, music, news or simply webpages links. The performance of this kind of system depends on a large amount of information. At the same time, the amount of information on the Web is continuously growing, especially due to increased User Generated Content since the apparition of Web 2.0. In this paper, we propose a method that exploits blog textual data in order to supply a recommender system. The method we propose has two steps. First, subjective texts are labelled according to their expressed opinion in order to build a user-item-rating matrix. Second, this matrix is used to establish recommendations thanks to a collaborative filtering technique.
Type de document :
Communication dans un congrès
Web Intelligence, Aug 2010, Toronto, Canada. 2010
Liste complète des métadonnées

Littérature citée [3 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00514533
Contributeur : Isabelle Tellier <>
Soumis le : jeudi 2 septembre 2010 - 17:31:38
Dernière modification le : mardi 6 décembre 2016 - 01:02:14
Document(s) archivé(s) le : vendredi 3 décembre 2010 - 02:26:13

Fichier

WI2010.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00514533, version 1

Collections

Citation

Damien Poirier, Françoise Fessant, Isabelle Tellier. Reducing the Cold-Start Problem in Content Recommendation Through Opinion Classification. Web Intelligence, Aug 2010, Toronto, Canada. 2010. 〈inria-00514533〉

Partager

Métriques

Consultations de la notice

153

Téléchargements de fichiers

142