Comparing Learning Algorithms in Automated Assume-Guarantee Reasoning

Abstract : We compare two learning algorithms for generating contextual assumptions in automated assume-guarantee reasoning. The CDNF algorithm implicitly represents contextual assumptions by a conjunction of DNF formulae, while the OBDD learning algorithm uses ordered binary decision diagrams as its representation. Using these learning algorithms, the performance of assume-guarantee reasoning is compared with monolithic interpolation-based Model Checking in parametrized hardware test cases.
Type de document :
Communication dans un congrès
Bernhard Steffen. International Symposium On Leveraging Applications of Formal Methods, Verification and Validation, Oct 2010, Crete, Greece. 2010, LNCS
Liste complète des métadonnées

https://hal.inria.fr/inria-00515167
Contributeur : Bow-Yaw Wang <>
Soumis le : lundi 6 septembre 2010 - 03:50:07
Dernière modification le : vendredi 25 mai 2018 - 12:02:06

Identifiants

  • HAL Id : inria-00515167, version 1

Collections

Citation

Yu-Fang Chen, Edmund Clarke, Azadeh Farzan, Fei He, Ming-Hsien Tsai, et al.. Comparing Learning Algorithms in Automated Assume-Guarantee Reasoning. Bernhard Steffen. International Symposium On Leveraging Applications of Formal Methods, Verification and Validation, Oct 2010, Crete, Greece. 2010, LNCS. 〈inria-00515167〉

Partager

Métriques

Consultations de la notice

254