Fault detection with bayesian network

Abstract : The purpose of this chapter is to present a method for the fault detection in multivariate process, with a bayesian network. In this context, the detection is viewed as a classification task like the discriminant analysis, which can be transposed in a bayesian network. We prove mathematically the equivalence between the usual detection methods that are the multivariate control charts (Hotelling's T², MEWMA) and the quadratic discriminant analysis (in a bayesian network). So, this makes possible the fault detection with a bayesian network. An application on the Tennessee Eastman Process is given in order to demonstrate the approach.
Type de document :
Chapitre d'ouvrage
Alexander Zemliak. Frontiers in Robotics, Automation and Control, IN-TECH, 2008, 9789537619176
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00517063
Contributeur : Sylvain Verron <>
Soumis le : lundi 13 septembre 2010 - 14:34:21
Dernière modification le : lundi 5 février 2018 - 15:00:08
Document(s) archivé(s) le : mardi 14 décembre 2010 - 02:51:34

Fichier

verron08c.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00517063, version 1

Collections

Citation

Sylvain Verron, Teodor Tiplica, Abdessamad Kobi. Fault detection with bayesian network. Alexander Zemliak. Frontiers in Robotics, Automation and Control, IN-TECH, 2008, 9789537619176. 〈inria-00517063〉

Partager

Métriques

Consultations de la notice

189

Téléchargements de fichiers

452