Application of Random Walks to Decentralized Recommender Systems

Abstract : The need for efficient decentralized recommender systems has been appreciated for some time, both for the intrinsic advantages of decentralization and the necessity of integrating recommender systems into P2P applications. On the other hand, the accuracy of recommender systems is often hurt by data sparsity. In this paper, we compare different decentralized user-based and item-based Collaborative Filtering (CF) algorithms with each other, and propose a new user-based random walk approach customized for decentralized systems, specifically designed to handle sparse data. We show how the application of random walks to decentralized environments is different from the centralized version. We examine the performance of our random walk approach in different settings by varying the sparsity, the similarity measure and the neighborhood size. In addition, we introduce the \textit{popularizing} disadvantage of the significance weighting term traditionally used to increase the precision of similarity measures, and elaborate how it can affect the performance of the random walk algorithm. The simulations on MovieLens 10,000,000 ratings dataset demonstrate that over a wide range of sparsity, our algorithm outperforms other decentralized CF schemes. Moreover, our results show decentralized user-based approaches perform better than their item-based counterparts in P2P recommender applications.
Type de document :
Communication dans un congrès
14th International Conference On Principles Of Distributed Systems, Dec 2010, Tozeur, Tunisia. 2010
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00520214
Contributeur : Afshin Moin <>
Soumis le : mercredi 22 septembre 2010 - 15:31:21
Dernière modification le : mercredi 11 avril 2018 - 01:56:50
Document(s) archivé(s) le : jeudi 23 décembre 2010 - 03:06:55

Fichier

opodis10_HAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00520214, version 1

Citation

Anne-Marie Kermarrec, Vincent Leroy, Afshin Moin, Christopher Thraves-Caro. Application of Random Walks to Decentralized Recommender Systems. 14th International Conference On Principles Of Distributed Systems, Dec 2010, Tozeur, Tunisia. 2010. 〈inria-00520214〉

Partager

Métriques

Consultations de la notice

320

Téléchargements de fichiers

670