Abstract : We present an approach for verifying dynamic systems specified in rewriting logic, a formal specification language implemented in the Maude system. Our approach is tailored for invariants, i.e., properties that hold on all states reachable from a given class of initial states. The approach consists in encoding invariance properties into inductive properties written in membership equational logic, a sublogic of rewriting logic also implemented in Maude. The invariants can then be verified using an inductive theorem prover available for membership equational logic, possibly in interaction with narrowing-based symbolic analysis tools for rewriting-logic specifications also available in the Maude environment. We show that it is possible, and useful, to automatically test invariants by symbolic analysis before interactively proving them.