Learning Multi-label Alternating Decision Trees from Texts and Data

Abstract : Multi-label decision procedures are the target of the supervised learning algorithm we propose in this paper. Multi-label decision procedures map examples to a finite set of labels. Our learning algorithm extends Schapire and Singer?s Adaboost.MH and produces sets of rules that can be viewed as trees like Alternating Decision Trees (invented by Freund and Mason). Experiments show that we take advantage of both performance and readability using boosting techniques as well as tree representations of large set of rules. Moreover, a key feature of our algorithm is the ability to handle heterogenous input data: discrete and continuous values and text data. Keywords boosting - alternating decision trees - text mining - multi-label problems
Type de document :
Communication dans un congrès
Petra Perner, Azriel Rosenfeld. International Conference on Machine Learning and Data Mining, 2003, Leipzig, Georgia. Springer, pp.35-49, 2003, Lecture Notes in Artificial Intelligence
Liste complète des métadonnées

https://hal.inria.fr/inria-00536733
Contributeur : Marc Tommasi <>
Soumis le : mardi 16 novembre 2010 - 18:34:51
Dernière modification le : mardi 24 avril 2018 - 13:37:29
Document(s) archivé(s) le : jeudi 17 février 2011 - 03:09:30

Fichiers

mldm03.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00536733, version 1

Collections

Citation

Françesco De Comite, Rémi Gilleron, Marc Tommasi. Learning Multi-label Alternating Decision Trees from Texts and Data. Petra Perner, Azriel Rosenfeld. International Conference on Machine Learning and Data Mining, 2003, Leipzig, Georgia. Springer, pp.35-49, 2003, Lecture Notes in Artificial Intelligence. 〈inria-00536733〉

Partager

Métriques

Consultations de la notice

317

Téléchargements de fichiers

795