A Complete, Exact and Efficient Implementation for Computing the Edge-Adjacency Graph of an Arrangement of Quadrics

Michael Hemmer 1 Laurent Dupont 2 Sylvain Petitjean 2 Elmar Schömer 3
1 GEOMETRICA - Geometric computing
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Saclay - Ile de France
2 VEGAS - Effective Geometric Algorithms for Surfaces and Visibility
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : We present a complete, exact and efficient implementation to compute the edge-adjacency graph of an arrangement of quadrics, i.e. surfaces of algebraic degree 2. This is a major step towards the computation of the full 3D arrangement. We enhanced an implementation for an exact parameterization of the intersection curves of two quadrics, such that we can compute the exact parameter value for intersection points and from that the edge-adjacency graph of the arrangement. Our implementation is complete in the sense that it can handle all kinds of inputs including all degenerate ones, i.e. singularities or tangential intersection points. It is exact in that it always computes the mathematically correct result. It is efficient measured in running times, i.e. it compares favorably to the only previous implementation.
Document type :
Journal articles
Journal of Symbolic Computation, Elsevier, 2011, 46 (4), pp.467-494. 〈10.1016/j.jsc.2010.11.002〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00537592
Contributor : Sylvain Petitjean <>
Submitted on : Thursday, November 18, 2010 - 5:06:29 PM
Last modification on : Thursday, February 9, 2017 - 3:47:41 PM

Identifiers

Collections

Citation

Michael Hemmer, Laurent Dupont, Sylvain Petitjean, Elmar Schömer. A Complete, Exact and Efficient Implementation for Computing the Edge-Adjacency Graph of an Arrangement of Quadrics. Journal of Symbolic Computation, Elsevier, 2011, 46 (4), pp.467-494. 〈10.1016/j.jsc.2010.11.002〉. 〈inria-00537592〉

Share

Metrics

Record views

407