The Iteration-Tuned Dictionary for Sparse Representations

Joaquin Zepeda 1, 2 Christine Guillemot 1 Ewa Kijak 2
1 TEMICS - Digital image processing, modeling and communication
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
2 TEXMEX - Multimedia content-based indexing
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : We introduce a new dictionary structure for sparse representations better adapted to pursuit algorithms used in practical scenarios. The new structure, which we call an Iteration-Tuned Dictionary (ITD), consists of a set of dictionaries each associated to a single iteration index of a pursuit algorithm. In this work we first adapt pursuit decompositions to the case of ITD structures and then introduce a training algorithm used to construct ITDs. The training algorithm consists of applying a K-means to the (i-1)-th residuals of the training set to thus produce the i-th dictionary of the ITD structure. In the results section we compare our algorithm against the state-of-the-art dictionary training scheme and show that our method produces sparse representations yielding better signal approximations for the same sparsity level.
Type de document :
Communication dans un congrès
IEEE International Workshop on Multimedia Signal Processing, Oct 2010, St. Malo, France. 2010
Liste complète des métadonnées

https://hal.inria.fr/inria-00539076
Contributeur : Joaquin Zepeda <>
Soumis le : mardi 23 novembre 2010 - 22:41:49
Dernière modification le : vendredi 20 juillet 2018 - 13:42:08

Identifiants

  • HAL Id : inria-00539076, version 1

Citation

Joaquin Zepeda, Christine Guillemot, Ewa Kijak. The Iteration-Tuned Dictionary for Sparse Representations. IEEE International Workshop on Multimedia Signal Processing, Oct 2010, St. Malo, France. 2010. 〈inria-00539076〉

Partager

Métriques

Consultations de la notice

209