Under-determined reverberant audio source separation using a full-rank spatial covariance model

Ngoc Duong 1 Emmanuel Vincent 1 Rémi Gribonval 1
1 METISS - Speech and sound data modeling and processing
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : This article addresses the modeling of reverberant recording environments in the context of under-determined convolutive blind source separation. We model the contribution of each source to all mixture channels in the time-frequency domain as a zero-mean Gaussian random variable whose covari- ance encodes the spatial characteristics of the source. We then consider four specific covariance models, including a full-rank unconstrained model. We derive a family of iterative expectation- maximization (EM) algorithms to estimate the parameters of each model and propose suitable procedures adapted from the state- of-the-art to initialize the parameters and to align the order of the estimated sources across all frequency bins. Experimental results over reverberant synthetic mixtures and live recordings of speech data show the effectiveness of the proposed approach.
Liste complète des métadonnées

Cited literature [24 references]  Display  Hide  Download

https://hal.inria.fr/inria-00541865
Contributor : Rémi Gribonval <>
Submitted on : Thursday, January 27, 2011 - 9:48:52 PM
Last modification on : Thursday, March 21, 2019 - 2:20:42 PM
Document(s) archivé(s) le : Thursday, April 28, 2011 - 2:30:59 AM

File

duong_TASLP10.pdf
Files produced by the author(s)

Identifiers

Citation

Ngoc Duong, Emmanuel Vincent, Rémi Gribonval. Under-determined reverberant audio source separation using a full-rank spatial covariance model. IEEE Transactions on Audio, Speech and Language Processing, Institute of Electrical and Electronics Engineers, 2010, 18 (7), pp.1830--1840. ⟨10.1109/TASL.2010.2050716⟩. ⟨inria-00541865⟩

Share

Metrics

Record views

652

Files downloads

717