Low bitrate object coding of musical audio using bayesian harmonic models

Abstract : This article deals with the decomposition of music signals into pitched sound objects made of harmonic sinusoidal partials for very low bitrate coding purposes. After a brief review of existing methods, we recast this problem in the Bayesian framework. We propose a family of probabilistic signal models combining learnt object priors and various perceptually motivated distortion measures. We design efficient algorithms to infer object parameters and build a coder based on the interpolation of frequency and amplitude parameters. Listening tests suggest that the loudness-based distortion measure outperforms other distortion measures and that our coder results in a better sound quality than baseline transform and parametric coders at 8 kbit/s and 2 kbit/s. This work constitutes a new step towards a fully object-based coding system, which would represent audio signals as collections of meaningful note-like sound objects.
Type de document :
Article dans une revue
IEEE Transactions on Audio, Speech and Language Processing, Institute of Electrical and Electronics Engineers, 2007, 15 (4), pp.1273--1282
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00544265
Contributeur : Emmanuel Vincent <>
Soumis le : mardi 7 décembre 2010 - 15:41:05
Dernière modification le : mardi 24 octobre 2017 - 17:14:02
Document(s) archivé(s) le : mardi 8 mars 2011 - 04:40:00

Fichier

vincent_TASLP07.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : inria-00544265, version 1

Citation

Emmanuel Vincent, Mark Plumbley. Low bitrate object coding of musical audio using bayesian harmonic models. IEEE Transactions on Audio, Speech and Language Processing, Institute of Electrical and Electronics Engineers, 2007, 15 (4), pp.1273--1282. 〈inria-00544265〉

Partager

Métriques

Consultations de la notice

113

Téléchargements de fichiers

113