Musical source separation using time-frequency source priors

Abstract : This article deals with the source separation problem for stereo musical mixtures using prior information about the sources (instrument names and localization). After a brief review of existing methods, we design a family of probabilistic mixture generative models combining modified positive Independent Subspace Analysis (ISA), localization models and Segmental Models (SM). We express source separation as a Bayesian estimation problem and we propose efficient resolution algorithms. The resulting separation methods rely on a variable number of cues including harmonicity, spectral envelope, azimuth, note duration and monophony. We compare these methods on two synthetic mixtures with long reverberation. We show that they outperform methods exploiting spatial diversity only and that they are robust against approximate localization of the sources.
Type de document :
Article dans une revue
IEEE Transactions on Audio, Speech and Language Processing, Institute of Electrical and Electronics Engineers, 2006, 14 (1), pp.91--98
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00544269
Contributeur : Emmanuel Vincent <>
Soumis le : mardi 7 décembre 2010 - 15:43:31
Dernière modification le : mardi 24 octobre 2017 - 17:14:02
Document(s) archivé(s) le : mardi 8 mars 2011 - 04:41:17

Fichier

vincent_TASLP06.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : inria-00544269, version 1

Citation

Emmanuel Vincent. Musical source separation using time-frequency source priors. IEEE Transactions on Audio, Speech and Language Processing, Institute of Electrical and Electronics Engineers, 2006, 14 (1), pp.91--98. 〈inria-00544269〉

Partager

Métriques

Consultations de la notice

165

Téléchargements de fichiers

495