Instrument identification in solo and ensemble music using independent subspace analysis

Abstract : We investigate the use of Independent Subspace Analysis (ISA) for instrument identification in musical recordings. We represent short-term log-power spectra of possibly polyphonic music as weighted non-linear combinations of typical note spectra plus background noise. These typical note spectra are learnt either on databases containing isolated notes or on solo recordings from different instruments. We show that this model has some theoretical advantages over methods based on Gaussian Mixture Models (GMM) or on linear ISA. Preliminary experiments with five instruments and test excerpts taken from commercial CDs give promising results. The performance on clean solo excerpts is comparable with existing methods and shows limited degradation under reverberant conditions. Applied to a difficult duo excerpt, the model is also able to identify the right pair of instruments and to provide an approximate transcription of the notes played by each instrument.
Type de document :
Communication dans un congrès
5th Int. Conf. on Music Information Retrieval (ISMIR), Oct 2004, Barcelona, Spain. pp.576--581, 2004
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00544689
Contributeur : Emmanuel Vincent <>
Soumis le : mercredi 8 décembre 2010 - 16:39:27
Dernière modification le : mardi 24 octobre 2017 - 17:14:02
Document(s) archivé(s) le : jeudi 10 mars 2011 - 12:27:06

Fichier

vincent_ISMIR04.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00544689, version 1

Collections

Citation

Emmanuel Vincent, Xavier Rodet. Instrument identification in solo and ensemble music using independent subspace analysis. 5th Int. Conf. on Music Information Retrieval (ISMIR), Oct 2004, Barcelona, Spain. pp.576--581, 2004. 〈inria-00544689〉

Partager

Métriques

Consultations de la notice

251

Téléchargements de fichiers

207