Underdetermined source separation with structured source priors

Abstract : We consider the source extraction problem for stereo instantaneous musical mixtures with more than two sources. We prove that usual separation methods based only on spatial diversity have performance limitations when the sources overlap in the time-frequency plane. We propose a new separation scheme combining spatial diversity and structured source priors. We present possible priors based on nonlinear Independent Subspace Analysis (ISA) and Hidden Markov Models (HMM), whose parameters are learnt on solo musical excerpts. We show with an example that they actually improve the separation performance.
Type de document :
Communication dans un congrès
5th Int. Conf. on Independent Component Analysis and Blind Signal Separation (ICA), Sep 2004, Granada, Spain. pp.327--332, 2004
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00544694
Contributeur : Emmanuel Vincent <>
Soumis le : mercredi 8 décembre 2010 - 16:43:40
Dernière modification le : vendredi 2 novembre 2018 - 17:25:57
Document(s) archivé(s) le : jeudi 10 mars 2011 - 12:29:16

Fichier

vincent_ICA04.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00544694, version 1

Collections

Citation

Emmanuel Vincent, Xavier Rodet. Underdetermined source separation with structured source priors. 5th Int. Conf. on Independent Component Analysis and Blind Signal Separation (ICA), Sep 2004, Granada, Spain. pp.327--332, 2004. 〈inria-00544694〉

Partager

Métriques

Consultations de la notice

69

Téléchargements de fichiers

115