Certification of a Numerical Result: Use of Interval Arithmetic and Multiple Precision

Hong Diep Nguyen 1 Nathalie Revol 1
1 ARENAIRE - Computer arithmetic
Inria Grenoble - Rhône-Alpes, LIP - Laboratoire de l'Informatique du Parallélisme
Abstract : Using floating-point arithmetic to solve a numerical problem yields a computed result, which is an approximation of the exact solution because of roundoff errors. In this paper, we present an approach to certify the computed solution. Here, "certify" means computing a guaranteed enclosure of the error between the computed, approximate, result and the exact, unknown result. We discuss an iterative refinement method: classically, such methods aim at computing an approximation of the error and they add it to the previous result to improve its accuracy. We add two ingredients: interval arithmetic is used to get an enclosure of the error instead of an approximation, and multiple precision is used to reach higher accuracy. We exemplify this approach on the certification of the solution of a linear system.
Type de document :
Communication dans un congrès
NSV-3: Third International Workshop on Numerical Software Verification., Jul 2010, Edinburgh, United Kingdom. 2010
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00544798
Contributeur : Nathalie Revol <>
Soumis le : jeudi 9 décembre 2010 - 00:55:55
Dernière modification le : vendredi 20 avril 2018 - 15:44:23
Document(s) archivé(s) le : lundi 5 novembre 2012 - 12:50:32

Fichier

Nguyen-Revol-v2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00544798, version 1

Collections

Citation

Hong Diep Nguyen, Nathalie Revol. Certification of a Numerical Result: Use of Interval Arithmetic and Multiple Precision. NSV-3: Third International Workshop on Numerical Software Verification., Jul 2010, Edinburgh, United Kingdom. 2010. 〈inria-00544798〉

Partager

Métriques

Consultations de la notice

191

Téléchargements de fichiers

119