Vision-Based System for Human Detection and Tracking in Indoor Environment

Abstract : In this paper, we propose a vision-based system for human detection and tracking in indoor environment using a static camera. The proposed method is based on object recognition in still images combined with methods using temporal information from the video. Doing that, we improve the performance of the overall system and reduce the task complexity. We first use background subtraction to limit the search space of the classifier. The segmentation is realized by modeling each background pixel by a single gaussian model. As each connected component detected by the background subtraction potentially corresponds to one person, each blob is indepentently tracked. The tracking process is based on the analysis of connected components position and interest points tracking. In order to know the nature of various objects that could be present in the scene, we use multiple cascades of boosted classifiers based on Haar-like filters. We also present in this article a wide evaluation of this system based on a large set of videos.
Type de document :
Article dans une revue
International Journal of Social Robotics, Springer, 2010, Special issue on: People Detection and Tracking, 2 (1), pp.41-52. 〈10.1007/s12369-009-0040-4〉
Liste complète des métadonnées

Littérature citée [42 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00545469
Contributeur : Baptiste Hemery <>
Soumis le : mercredi 17 octobre 2012 - 13:46:01
Dernière modification le : jeudi 11 janvier 2018 - 06:26:17
Document(s) archivé(s) le : vendredi 18 janvier 2013 - 02:20:10

Fichier

ijsr.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Yannick Benezeth, Bruno Emile, Hélène Laurent, Christophe Rosenberger. Vision-Based System for Human Detection and Tracking in Indoor Environment. International Journal of Social Robotics, Springer, 2010, Special issue on: People Detection and Tracking, 2 (1), pp.41-52. 〈10.1007/s12369-009-0040-4〉. 〈inria-00545469〉

Partager

Métriques

Consultations de la notice

218

Téléchargements de fichiers

628