Dynamically scheduled Cholesky factorization on multicore architectures with GPU accelerators.

Abstract : Although the hardware has dramatically changed in the last few years, nodes of multicore chips augmented by Graphics Processing Units (GPUs) seem to be a trend of major importance. Previous approaches for scheduling dense linear operations on such a complex node led to high performance but at the double cost of not using the potential of all the cores and producing a static and non generic code. In this extended abstract, we present a new approach for scheduling dense linear algebra operations on multicore architectures with GPU accelerators using a dynamic scheduler capable of using the full potential of the node [1]. We underline the benefits both in terms of programmability and performance. We illustrate our approach with a Cholesky factorization relying on cutting edge GPU and CPU kernels [2], [3] achieving roughly 900 Gflop/s on an eight cores node accelerated with three NVIDIA Tesla GPUs.
Type de document :
Communication dans un congrès
Symposium on Application Accelerators in High Performance Computing (SAAHPC), Jul 2010, Knoxville, United States. 2010


https://hal.inria.fr/inria-00547616
Contributeur : Samuel Thibault <>
Soumis le : jeudi 16 décembre 2010 - 19:09:19
Dernière modification le : jeudi 10 septembre 2015 - 01:08:12
Document(s) archivé(s) le : lundi 5 novembre 2012 - 14:30:26

Fichier

saahpc.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00547616, version 1

Collections

Citation

Emmanuel Agullo, Cédric Augonnet, Jack Dongarra, Hatem Ltaief, Raymond Namyst, et al.. Dynamically scheduled Cholesky factorization on multicore architectures with GPU accelerators.. Symposium on Application Accelerators in High Performance Computing (SAAHPC), Jul 2010, Knoxville, United States. 2010. <inria-00547616>

Partager

Métriques

Consultations de
la notice

632

Téléchargements du document

229