Towards multi-view object class detection

Abstract : We present a novel system for generic object class detection. In contrast to most existing systems which focus on a single viewpoint or aspect, our approach can detect object instances from arbitrary viewpoints. This is achieved by combining the Implicit Shape Model for object class detection proposed by Leibe and Schiele with the multi-view specific object recognition system of Ferrari et al. After learning single-view codebooks, these are interconnected by so-called activation links, obtained through multi-view region tracks across different training views of individual object instances. During recognition, these integrated codebooks work together to determine the location and pose of the object. Experimental results demonstrate the viability of the approach and compare it to a bank of independent single-view detectors.
Type de document :
Communication dans un congrès
IEEE Conference on Computer Vision & Pattern Recognition (CPRV '06), Jun 2006, New York, United States. IEEE Computer Society, 2, pp.1589, 2006, 〈http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1640946〉. 〈10.1109/CVPR.2006.311〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00548577
Contributeur : Thoth Team <>
Soumis le : lundi 20 décembre 2010 - 09:49:18
Dernière modification le : mercredi 11 avril 2018 - 01:55:13
Document(s) archivé(s) le : lundi 21 mars 2011 - 02:31:17

Fichier

TFLTSV06.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Alexander Thomas, Vittorio Ferrari, Bastian Leibe, Tinne Tuytelaars, Bernt Schiele, et al.. Towards multi-view object class detection. IEEE Conference on Computer Vision & Pattern Recognition (CPRV '06), Jun 2006, New York, United States. IEEE Computer Society, 2, pp.1589, 2006, 〈http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1640946〉. 〈10.1109/CVPR.2006.311〉. 〈inria-00548577〉

Partager

Métriques

Consultations de la notice

305

Téléchargements de fichiers

367