Trans Media Relevance Feedback for Image Autoannotation - Archive ouverte HAL Access content directly
Conference Papers Year : 2010

Trans Media Relevance Feedback for Image Autoannotation

(1, 2) , (2) , (1)
1
2

Abstract

Automatic image annotation is an important tool for keyword-based image retrieval, providing a textual index for non-annotated images. Many image auto annotation methods are based on visual similarity between images to be annotated and images in a training corpus. The annotations of the most similar training images are transferred to the image to be annotated. In this paper we consider using also similarities among the training images, both visual and textual, to derive pseudo relevance models, as well as crossmedia relevance models. We extend a recent state-of-the-art image annotation model to incorporate this information. On two widely used datasets (COREL and IAPR) we show experimentally that the pseudo-relevance models improve the annotation accuracy.
Vignette du fichier
GVS11a.png (22.91 Ko) Télécharger le fichier Fichier principal
Vignette du fichier
MVC10.pdf (118.69 Ko) Télécharger le fichier
Format : Figure, Image
Origin : Files produced by the author(s)
Loading...

Dates and versions

inria-00548632 , version 1 (20-12-2010)

Identifiers

Cite

Thomas Mensink, Jakob Verbeek, Gabriela Csurka. Trans Media Relevance Feedback for Image Autoannotation. BMVC 2010 - British Machine Vision Conference, Aug 2010, Aberystwyth, United Kingdom. pp.20.1-20.12, ⟨10.5244/C.24.20⟩. ⟨inria-00548632⟩
257 View
234 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More