Improving web-image search results using query-relative classifiers

Josip Krapac 1 Moray Allan 2 Jakob Verbeek 1 Frédéric Jurie 3
1 LEAR - Learning and recognition in vision
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
3 Equipe Image - Laboratoire GREYC - UMR6072
GREYC - Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen
Abstract : Web image search using text queries has received considerable attention. However, current state-of-the-art approaches require training models for every new query, and are therefore unsuitable for real-world web search applications. The key contribution of this paper is to introduce generic classifiers that are based on query-relative features which can be used for new queries without additional training. They combine textual features, based on the occurence of query terms in web pages and image meta-data, and visual histogram representations of images. The second contribution of the paper is a new database for the evaluation of web image search algorithms. It includes 71478 images returned by a web search engine for 353 different search queries, along with their meta-data and ground-truth annotations. Using this data set, we compared the image ranking performance of our model with that of the search engine, and with an approach that learns a separate classifier for each query. Our generic models that use query-relative features improve significantly over the raw search engine ranking, and also outperform the query-specific models.
Type de document :
Communication dans un congrès
CVPR 2010 - IEEE Conference on Computer Vision & Pattern Recognition, Jun 2010, San Francisco, United States. IEEE Computer Society, pp.1094-1101, 2010, 〈http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5540092〉. 〈10.1109/CVPR.2010.5540092〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/inria-00548636
Contributeur : Thoth Team <>
Soumis le : lundi 20 décembre 2010 - 10:22:50
Dernière modification le : jeudi 7 décembre 2017 - 15:18:07
Document(s) archivé(s) le : lundi 21 mars 2011 - 03:25:16

Fichiers

kavj10cvpr.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Josip Krapac, Moray Allan, Jakob Verbeek, Frédéric Jurie. Improving web-image search results using query-relative classifiers. CVPR 2010 - IEEE Conference on Computer Vision & Pattern Recognition, Jun 2010, San Francisco, United States. IEEE Computer Society, pp.1094-1101, 2010, 〈http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5540092〉. 〈10.1109/CVPR.2010.5540092〉. 〈inria-00548636〉

Partager

Métriques

Consultations de la notice

728

Téléchargements de fichiers

655