From images to shape models for object detection - Archive ouverte HAL Access content directly
Journal Articles International Journal of Computer Vision Year : 2010

From images to shape models for object detection


We present an object class detection approach which fully integrates the complementary strengths offered by shape matchers. Like an object detector, it can learn class models directly from images, and can localize novel instances in the presence of intra-class variations, clutter, and scale changes. Like a shape matcher, it finds the boundaries of objects, rather than just their bounding-boxes. This is achieved by a novel technique for learning a shape model of an object class given images of example instances. Furthermore, we also integrate Hough-style voting with a non-rigid point matching algorithm to localize the model in cluttered images. As demonstrated by an extensive evaluation, our method can localize object boundaries accurately and does not need segmented examples for training (only bounding-boxes).
Fichier principal
Vignette du fichier
FJS10.pdf (2.28 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

inria-00548643 , version 1 (20-12-2010)



Vittorio Ferrari, Frédéric Jurie, Cordelia Schmid. From images to shape models for object detection. International Journal of Computer Vision, 2010, 87 (3), pp.284-303. ⟨10.1007/s11263-009-0270-9⟩. ⟨inria-00548643⟩
489 View
538 Download



Gmail Facebook Twitter LinkedIn More