Object Recognition by Integrating Multiple Image Segmentations

Caroline Pantofaru 1 Cordelia Schmid 2 Martial Hebert 1
2 LEAR - Learning and recognition in vision
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : The joint tasks of object recognition and object segmentation from a single image are complex in their requirement of not only correct classification, but also deciding exactly which pixels belong to the object. Exploring all possible pixel subsets is prohibitively expensive, leading to recent approaches which use unsupervised image segmentation to reduce the size of the configuration space. Image segmentation, however, is known to be unstable, strongly affected by small image perturbations, feature choices, or different segmentation algorithms. This instability has led to advocacy for using multiple segmentations of an image. In this paper, we explore the question of how to best integrate the information from multiple bottom-up segmentations of an image to improve object recognition robustness. By integrating the image partition hypotheses in an intuitive combined top-down and bottom-up recognition approach, we improve object and feature support. We further explore possible extensions of our method and whether they provide improved performance. Results are presented on the MSRC 21-class data set and the Pascal VOC2007 object segmentation challenge.
Type de document :
Communication dans un congrès
David A. Forsyth and Philip H. S. Torrand Andrew Zisserman. ECCV 2008 - 10th European Conference on Computer Vision, Oct 2008, Marseille, France. Springer-Verlag, 5304, pp.481-494, 2008, Lecture Notes in Computer Science. <http://www.springerlink.com/content/p843w5x314375615/>. <10.1007/978-3-540-88690-7_36>
Liste complète des métadonnées


https://hal.inria.fr/inria-00548655
Contributeur : Thoth Team <>
Soumis le : lundi 20 décembre 2010 - 10:24:31
Dernière modification le : mercredi 9 juillet 2014 - 16:08:01
Document(s) archivé(s) le : lundi 21 mars 2011 - 03:28:26

Fichier

pantofaru_eccv08.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Caroline Pantofaru, Cordelia Schmid, Martial Hebert. Object Recognition by Integrating Multiple Image Segmentations. David A. Forsyth and Philip H. S. Torrand Andrew Zisserman. ECCV 2008 - 10th European Conference on Computer Vision, Oct 2008, Marseille, France. Springer-Verlag, 5304, pp.481-494, 2008, Lecture Notes in Computer Science. <http://www.springerlink.com/content/p843w5x314375615/>. <10.1007/978-3-540-88690-7_36>. <inria-00548655>

Partager

Métriques

Consultations de
la notice

289

Téléchargements du document

360